Jumat, 02 November 2012

Oksidasi Alkohol


Oksidasi jenis-jenis alkohol (primer, sekunder dan tersier)
Agen pengoksidasi yang digunakan pada reaksi-reaksi ini biasanya adalah sebuah larutan natrium atau kalium dikromat(V)) yang diasamkan dengan asam sulfat encer. Jika oksidasi terjadi, larutan orange yang mengandung ion-ion dikromat(VI) direduksi menjadi sebuah larutan hijau yang mengandung ion-ion kromium(III).


Alkohol primer
Alkohol primer bisa dioksidasi baik menjadi aldehid maupun asam karboksilat tergantung pada kondisi-kondisi reaksi. Untuk pembentukan asam karboksisat, alkohol pertama-tama dioksidasi menjadi sebuah aldehid yang selanjutnya dioksidasi lebih lanjut menjadi asam.
Oksidasi parsial menjadi aldehid
Oksidasi alkohol akan menghasilkan aldehid jika digunakan alkohol yang berlebihan, dan aldehid bisa dipisahkan melalui distilasi sesaat setelah terbentuk.
Alkohol yang berlebih berarti bahwa tidak ada agen pengoksidasi yang cukup untuk melakukan tahap oksidasi kedua. Pemisahan aldehid sesegera mungkin setelah terbentuk berarti bahwa tidak tinggal menunggu untuk dioksidasi kembali.
Jika digunakan etanol sebagai sebuah alkohol primer sederhana, maka akan dihasilkan aldehid etanal, CH3CHO.
Persamaan lengkap untuk reaksi ini agak rumit, dan kita perlu memahami tentang persamaan setengah-reaksi untuk menyelesaikannya.

Dalam kimia organik, versi-versi sederhana dari reaksi ini sering digunakan dengan berfokus pada apa yang terjadi terhadap zat-zat organik yang terbentuk. Untuk melakukan ini, oksigen dari sebuah agen pengoksidasi dinyatakan sebagai [O]. Penulisan ini dapat menghasilkan persamaan reaksi yang lebih sederhana:

Penulisan ini juga dapat membantu dalam mengingat apa yang terjadi selama reaksi berlangsung. Kita bisa membuat sebuah struktur sederhana yang menunjukkan hubungan antara alkohol primer dengan aldehid yang terbentuk.

Oksidasi sempurna menjadi asam karboksilat
Untuk melangsungkan oksidasi sempurna, kita perlu menggunakan agen pengoksidasi yang berlebih dan memastikan agar aldehid yang terbentuk pada saat produk setengah-jalan tetap berada dalam campuran.
Alkohol dipanaskan dibawah refluks dengan agen pengoksidasi berlebih. Jika reaksi telah selesai, asam karboksilat bisa dipisahkan dengan distilasi.
Persamaan reaksi sempurna untuk oksidasi etanol menjadi asam etanoat adalah sebagai berikut:

Persamaan reaksi yang lebih sederhana biasa dituliskan sebagai berikut:

Atau, kita bisa menuliskan persamaan terpisah untuk dua tahapan reaksi, yakni pembentukan etanal dan selanjutnya oksidasinya.

Reaksi yang terjadi pada tahap kedua adalah:

Alkohol sekunder
Alkohol sekunder dioksidasi menjadi keton. Sebagai contoh, jika alkohol sekunder, propan-2-ol, dipanaskan dengan larutan natrium atau kalium dikromat(VI) yang diasamkan dengan asam sulfat encer, maka akan terbentuk propanon.
Perubahan-perubahan pada kondisi reaksi tidak akan dapat merubah produk yang terbentuk.
Dengan menggunakan persamaan reaksi yang sederhana, yang menunjukkan hubungan antara struktur, dapat dituliskan sebagai berikut:

Jika anda melihat kembali tahap kedua reaksi alkohol primer, anda akan melihat bahwa ada sebuah atom oksigen yang "disisipkan" antara atom karbon dan atom hidrogen dalam gugus aldehid untuk menghasilkan asam karboksilat. Untuk alkohol sekunder, tidak ada atom hidrogen semacam ini, sehingga reaksi berlangsung lebih cepat.
Alkohol tersier
Alkohol-alkohol tersier tidak dapat dioksidasi oleh natrium atau kalium dikromat(VI). Bahkan tidak ada reaksi yang terjadi.
Jika anda memperhatikan apa yang terjadi dengan alkohol primer dan sekunder, anda akan melibat bahwa agen pengoksidasi melepaskan hidrogen dari gugus -OH, dan sebuah atom hidrogen dari atom karbon terikat pada gugus -OH. Alkohol tersier tidak memiliki sebuah atom hidrogen yang terikat pada atom karbon tersebut.
Anda perlu melepaskan kedua atom hidrogen khusus tersebut untuk membentuk ikatan rangkap C=O.
Penggunaan reaksi-reaksi oksidasi alkohol sebagai sebuah reaksi uji untuk jenis-jenis alkohol (primer, sekunder dan tersier).
Melakukan reaksi uji
Pertama-tama anda harus memastikan bahwa larutan yang akan anda uji benar-benar adalah alkohol dengan cara menguji keberadaan gugus -OH di dalam larutan. Anda juga perlu menentukan bahwa cairan tersebut adalah cairan netral, bebas dari air sehingga bereaksi dengan fosfor(V) klorida menghasilkan asap-asap hidrogen klorida yang mengandung air.
Selanjutnya anda akan menambahkan beberapa tetes alkohol ke dalam sebuah tabung uji yang mengandung larutan kalium dikromat(VI) yang telah diasamkan dengan asam sulfat encer. Tabung tersebut akan dipanaskan di sebuah penangas air panas.
Hasil untuk masing-masing jenis alkohol
Alkohol tersier
Untuk alkohol primer atau sekunder, warna orange larutan akan berubah menjadi hijau. Sedangkan untuk alkohol tersier tidak ada perubahan warna.
Setelah pemanasan:
Membedakan alkohol primer dan alkohol sekunder
Anda memerlukan cukup aldehid (melalui oksidasi alkohol primer) atau keton (melalui oksidasi alkohol sekunder) untuk bisa membedakan antara alkohol primer dan alkohol sekunder. Ada beberapa hal yang dapat dilakukan oleh aldehid sedangkan keton tidak dapat melakukannya. Antara lain reaksi dengan pereaksi Tollens, laruan Fehling dan larutan Benedict, dan lain-lain yang akan dibahas di halaman lain.
Menurut pengalaman, uji-uji ini sedikit sulit dilakukan dan hasilnya tidak selamanya jelas seperti yang disebutkan dalam literatur. Sebuah uji yang jauh lebih sederhana namun cukup terpercaya adalah dengan menggunakan pereaksi Schiff
Pereaksi Schiff merupakan sebuah zat warna Fuchsin yang berubah warna jika sulfur oksida dilewatkan kedalamnya. Jika terdapat sedikit aldehid, warnanya akan berubah mejadi merah keungu-unguan yang terang.
Akan tetapi, pereaksi ini harus digunakan dalam keadaan dingin, karena keton bisa bereaksi dengan pereaksi ini sangat lambat menghasilkan warna yang sama. Jika dipanaskan, maka reaksi dengan keton akan lebih cepat, sehingga berpotensi memberikan hasil yang membingungkan.
Sambil anda memanaskan campuran reaksi dalam penangas air panas, anda bisa melewatkan uap yang dihasilkan melalui beberapa pereaksi Schiff.
·         Jika pereaksi Schiff cepat berubah warna menjadi merah keungu-unguan, maka dihasilkan aldeih dari sebuah alkohol primer.
·         Jika tidak ada perubahan warna dalam pereaksi Schiff, atau hanya sedikit warna pink yang terbentuk dalam beberapa menit, maka tidak dihasilkan aldehid, sehingga tidak ada alkohol primer.
Karena terjadi perubahan warna pada larutan kalium dikromat(VI) yang bersifat asam, maka harus terdapat akohol sekunder.


Masalah: Mengapa asam Karboksilat bersifat sangat asam dibandingkan alkohol? Mengingat Asam karboksilat adalah hasil reaksi oksidasi dari alkohol, dapatkah reaksi oksidasi ini menjelaskan bagaimana hal ini dapat terjadi?

Reaksi Asam Basa Pada Amina


Amina adalah senyawa organik yang mengandung atom nitrogen trivalent yang berkaitan dengan satu atau dua atau tiga atom karbon. Gugusan amino mengandung nitrogen terikat, kepada satu sampai tiga atom karbon (tetapi bukan gugusan karbonil). Apabila salah satu karbon yang terikat pada atom nitrogen adalah karbonil, senyawanya adalah amida, bukan amina. Gugus fungsi amina adalah R-NH2.

Ciri Khas
Di antara sejumlah golongan senyawa organik yang memiliki sifat basa, yang terpenting adalah amina. Di samping itu sejumlah amina memiliki keaktifan faali (fisiologis), misalnya efedrina berkhasiat sebagai peluruh dahak, meskalina yang dapat mengakibatkan seseorang berhalusinasi, dan amfetamina yang mempunyai efek stimulant. Kelompok senyawa alkaloid yang berasal dari tumbuhan secara kimia juga meripakan bagian dari golongan basa organik amina.

Isomerisasi Amina
Isomerisasi yang terbentuk pada senyawa-senyawa amina adalah isomer rangka. Isomer rangka adalah kesamaan rumus molekul namun memiliki perbedaan kerangka secara struktural.
Contohnya: C4H11N
 

Rumus dan Struktur
Rumus umum untuk senyawa amina adalah Cn H2n+3 N, dimana R dapat berupa alkil atau aril. Amina merupakan senyawa organik yang terpenting dalam kehidupan sehari-hari dan memiliki urutan yang paling penting dalam senyawa organik, oleh karena itu amina tidak terlepas dari semua unsur organik yang lain. Oleh karena itu sifat-sifat yang dipelajari dalam senyawa amina akan sangat membantu dalam memahami aspek kimiawi kelompok alkoid yang mempunyai peran penting dalam pembuatan obat-obat sinetik dewasa ini.

Tata Nama Amina
1.      Tata Nama IUPAC (Sistematik)
Nama sistematik untuk amina alifatik primer diberikan dengan cara seperti nama sistematik alkohol, monohidroksi akhiran –a dalam nama alkana induknya  diganti oleh kata amina..
Contoh:

CH3- CH-CH3
                                                         2-propanamina
         NH2

 
CH3-CH2-CH-CH2-CH3
                                                         3-pentanamina
        NH­3
Untuk amina sekunder dan tersier yang asimetrik (gugus yang terikat pada atom N tidak sama), lazimnya diberi nama dengan menganggapnya sebagai amina primer yang tersubtitusi pada atom N. Dalam hal ini berlaku ketentuan bahwa gugus sustituen yang lebih besar dianggap sebagai amina induk, sedangkan gugus subtituen yang lebih kecil lokasinya ditunjukkan dengan cara menggunakan awalan N (yang berarti terikat pada atom N).
Contoh:
CH3NCH3N3N-dimetilsiklopentamina
2.  Tata Nama Trivial
Nama trivial untuk sebagian besar amina adalah dengan menyebutkan gugus-gugus alkil/aril yang terikat pada atom N dengan ketentuan bahwa urutan penulisannya harus memperhatikan urutan abjad huruf terdepan dalam nama gugus alkil/aril kemudian ditambahkan kata amina di belakang nama gugus-gugus tersebut.
Contoh:
 CH3
 
CH3——NH2CH — C — NH2                    Metilamina tersier-butilamina
 
CH3


Klasifikasi Amina
Amina digolongkan menjadi amina primer (RNH2), sekunder (R2NH), atau tersier (R3N), tergantung kepada jumlah atom karbon yang terikat pada atom nitrogen (bukan pada atom karbon, seperti pada alkohol)
Amina primer (suatu karbon Terikat kepada N), Amina sekunder (Dua Korbon terikat kepada N), Amina tersier (Tiga karbon terkait kepada N).

Tabel Penggolongan Amina
Kelas kimiawi
Gugus
Rumus
Rumus struktural
Awalan
Akhiran
Contoh
Amina
RNH2

amino-
-amina




R2NH

amino-
-amina
R3N

amino-
-amina

Sifat-Sifat Amina
1. Sifat Kimia
·         Pada senyawa dengan rantai pendek, merupakan senyawa polar yang mudah larut dalam air.
·     Memiliki titik didih dan titik leleh yang dengan seiring bertambah cenderung bertambah panjangnya rantai karbon.

·         Semua amina bersifat sebagai basa lemah dan larutan amina dalam air bersifat basis.
2.    Sifat Fisika
·         Suku-suku rendah berbentuk gas.
·         Tak berwarna, berbau amoniak, berbau ikan.
·         Mudah larut dalam air
·         Amina yang lebih tinggi berbentuk cair/padat.
·         Kelarutan dalam air berkurang dengan naiknya BM.


Reaksi-reaksi Amina
Reaksi Amina dengan Asam Nitrit
1. Amina alifatik primer dengan HNO2 menghasilkan alkohol disertai pembebasan gas N2 menurut persamaan reaksi di bawah ini :
CH3-CH-NH2 + HNO2→ CH3-CH-OH + N2 + H2O
                                                  
        CH3                                     CH3
    
 Isopropilamina (amina 1°) isopropil alkohol (alkohol 2°)


2.        Amina alifatik/aromatik sekunder dengan HNO2 menghasilkan senyawa N-nitrosoamina yang mengandung unsur N-N=O
Contoh :
H N=O N + HNO2 → N + H2OCH3CH3
             
  N-metilanilina N-metilnitrosoanilina


3.      Amina alifatik/aromatik dengan HNO2 memberikan hasil reaksi yang  ditentukkan oleh jenis amina tersier yang digunakan. Pada amina alifatik/aromatik tersier reaksinya dengan HNO2 mengakibatkan terjadinya substitusi cincin aromatik oleh gugus –NO.
Contoh :
CH3 CH2 N + HNO2 → N + H2O CH3 CH3
          
  N,N-dietilanilina p-nitroso –N,N- dimetilanilina
4.      Amina aromatik primer jika direaksikan dengan HNO2 pada suhu 0°C menghasilkan garam diazonium.
Contoh:
NH2 + HNO2 + HCl N= : Cl + 2H2O

   Anilina benzenadiaazonium klorida


Masalah : Pada reaksi Amina alifatik primer dengan HNO2 di hasilkan alkohol disertai pembebasan gas Nirrogen. Mengapa hal ini terjadi? Mengapa dalam reksi basa dengan asam ini tidak terbentuk senyawa garam?